УТВЕРЖДЕНО
УЧЕНОГО СОВЕТА ИФФВТ
2022 г. протокол № 8
(Рыбин В.В.)
асшифровка подписи)
«30» июня 2022 г.

РАБОЧАЯ ПРОГРАММА

Дисциплина	<u>СПЕЦИАЛЬНЫЙ ФИЗИЧЕСКИЙ ПРАКТИКУМ</u>
Факультет	Инженерно-физический факультет высоких технологий
Кафедра	Радиофизики и электроники (РФЭ)
Курс	1,2

Направление 03.04.02 «Физика» (магистратура)

(код направления, полное наименование)

Направленность	(профиль/специализация)) <u>Физика пол</u>	упроводниког	<u>з. Микроэлект</u>	<u>роника</u>
		полное наименование			

Форма обучения: очная

Дата введения в учебный процесс УлГУ: «__01___»___сентября_____2022 г. Программа актуализирована на заседании кафедры: протокол №_____ от ____20____г. Программа актуализирована на заседании кафедры: протокол №____ от ____20____г. Программа актуализирована на заседании кафедры: протокол №____ от ____20____г.

Сведения о разработчиках:

ФИО	Аббревиатура	Должность,
ΨHO	кафедры	ученая степень, звание
Санников Дмитрий Германович	РФЭ	Профессор, д.фм.н., доцент

СОГЛАСОВАНО	СОГЛАСОВАНО		
Заведующий кафедрой РФЭ,	Заведующий выпускающей кафедрой РФЭ		
реализующей дисциплину			
	// Гурин Н.Т. / Подпись ФИО «23»июня2022г.		

Форма А стр. 1 из 11

Министерство науки и высшего образования Российской Федерации Ульяновский государственный университет	Форма	
Ф- Рабочая программа дисциплины		

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

<u> Цель освоения дисциплины</u> – практическое знакомство с физическими основами работы волоконно-оптических линий связи (ВОЛС) и радиофизических систем, использующихся в современной квантовой электронике и оптоэлектронике

Задача преподавания дисциплины:

- сформировать у студента навыки работы с элементами интегрально- и волоконнооптических устройств управления лазерным излучением в ВОЛС, а также радиотехническими компонентами (усилитель, детектор, преобразователь частоты, генератор, модулятор и т.д.).
- освоение экспериментальных методик измерения характеристик лазерных и светодиодных излучателей, а также пассивных компонентов ВОЛС.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Специальный физический практикум» Б1.О.01 относится к дисциплинам базовой части базового блока основной профессиональной образовательной программы (ОПОП) по направлению 03.04.02 – «Физика». Курс осваивается в течение двух семестров (2-й и 3-й) магистратуры.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОСНОВНОЙ ПРОФЕССИОНАЛЬНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Перечень формируемых компетенций в процессе освоения материала по дисциплине (модулю) с указанием кода и наименования компетенций, соотнесенных с установленными разработчиком РПД индикаторами достижения каждой компетенции отдельно в соответствии с ФГОС ВПО, ФГОС ВО.

Код	Наименование	Описание компетенции
компетенци	компетенции	
И		
ОПК-1	Фундаментальные	способен применять фундаментальные
	знания	знания в области физики для решения
		научно-исследовательских задач, а также
		владеть основами педагогики,
		необходимыми для осуществления
		преподавательской деятельности
ОПК-3	Проектирование и	способен применять знания в области
	разработка	информационных технологий, использовать
		современные компьютерные сети,
		программные продукты и ресурсы
		информационно-телекоммуникационной сети
		«Интернет» для решения задач
		профессиональной деятельности, в том числе
		находящихся за пределами профильной

Форма А стр. 2 из 11

Министерство науки и высшего образования Российской Федерации Ульяновский государственный университет	Форма	
Ф- Рабочая программа дисциплины		

		подготовки
ПК-1	Научно- исследовательская деятельность	способность самостоятельно ставить конкретные научно-исследовательские задачи в области физики и решать их с помощью современных информационных технологий и методов.

4. ОБЩАЯ ТРУДОЕМКОСТЬ ДИСЦИПЛИНЫ

- 4.1. Объем дисциплины в зачетных единицах (всего) 7 ЗЕ.
- 4.2. Объем дисциплины по видам учебной работы (в часах): 252

D	Deere waser	Семестры		
Виды учебной работы	Всего часов	2	3	
Общая трудоемкость дисциплины	252/252	108	144	
Аудиторные занятия	60/60	24/24	36/36	
Лекции				
Практические занятия (ПЗ)				
Лабораторные работы (ЛР)	60/60	24/24	36/36	
Самостоятельная работа (СР)	156/156	84/84	72/72	
Контроль	36/36		36/36	
Вид итогового контроля	зачет / экзамен	зачет	экзамен	

• В случае необходимости использования в учебном процессе частично/исключительно дистанционных образовательных технологий в таблице через слеш указывается количество часов работы ППС с обучающимися для проведения занятий в дистанционном формате с применением электронного обучения

4.3. Содержание дисциплины (модуля). Распределение часов по темам и видам учебной работы:

No	Раздел дисциплины	ЛР	CP	Контрол
п/п	т аздел дисциплины	711	CI	Ь
1.	Ватт-амперные характеристики ЛД и СИД	6	14	4
2.	Поляризационные характеристики ЛД и СИД	6	16	4
3.	Качественный анализ модовой структуры волоконных	6	14	4
	световодов. Исследование степени когерентности ЛД			
4.	Числовая апертура волоконных световодов	6	16	4
5.	Исследование влияния поперечных и продольных	6	14	4
	смещений торцов световода на затухание, вносимое			
	их соединением			
6.	Исследование характеристик пассивных элементов	6	22	4
	оптического линейного тракта			
7.	Исследование характеристик ЛД и фотоприемника	6	14	4

Форма А стр. 3 из 11

Министерство науки и высшего образования Российской Федерации Ульяновский государственный университет	Форма	
Ф- Рабочая программа дисциплины		

8.	Импульсная модуляция ЛД	6	16	4
9.	. Моделирование формы сигнала на приемном конце		14	2
	реальной оптической линии связи			
10.	10. Аналоговая модуляция ЛД		16	2
	ОООТИ	60	156	36

4.4. Содержание разделов дисциплины

Раздел I.

Тема № 1. Ватт-амперные характеристики лазерного (ЛД) и светоизлучающего (СИД) диодов. <u>Цель работы:</u>

- экспериментальное измерение ватт-амперных характеристик лазерного диода (ЛД) и светоизлучающего диода (СИД);
- экспериментальное определение тока накачки, соответствующего началу генерации оптического излучения и порогового тока ЛД;
- сравнение ватт-амперных характеристик ЛД и СИД.

Тема№2. Поляризационные характеристики ЛД и СИД.

Цель работы:

- экспериментальное измерение зависимости поляризации ЛД и СИД от тока накачки;

Тема№3. Качественный анализ модовой структуры волоконных световодов. Исследование степени когерентности ЛД.

Цель работы:

- изучить зависимость степени когерентности излучения ЛД от тока накачки по анализу распределения интенсивности в поперечном сечении волоконных световодов, возбуждаемых ЛД;
- определить причину появления модовых шумов в волоконно-оптической линии связи;
- исследовать модовый состав волоконных световодов по распределению интенсивности в их поперечном сечении.

Тема№4. Числовая апертура волоконных световодов.

Цель работы:

- произвести экспериментальное определение числовой апертуры одно- и многомодового световодов.

Раздел II

Тема № 1. Исследование затухания из-за продольно-поперечных смещений торцов оптических световодов при их стыковке.

<u>Цель работы:</u>

 исследование зависимости переходного ослабления, вызванного поперечными и продольными смещениями торцов многомодовых и одномодовых световодов.

Тема №2. Изучение затухания в оптических розетках и аттенюаторах при соединении волоконных световодов

Цель работы:

- определение затухания при соединении двух волоконных световодов в оптической розетке в зависимости от величины их числовой апертуры;
- измерение затухания, вносимого постоянным и переменным аттенюаторами на основе оптической розетки для много- и одномодовых волоконных световодов;
- > градуировка переменного аттенюатора и получение навыков работы с измерителем оптической мощности «Алмаз 21».

Тема №3. Измерения оптических и электрических характеристик лазерного диода и фотоприемника. <u>Цель работы:</u>

Форма А стр. 4 из 11

Министерство науки и высшего образования Российской Федерации Ульяновский государственный университет	Форма	
Ф- Рабочая программа дисциплины		

- > получение навыков практического использования измерителя оптической мощности;
- > измерение ватт-амперной характеристики лазерного диода с помощью измерителя оптической мощности «Алмаз-21»;
- исследование зависимости тока фотодиода от уровня оптической мощности, на его чувствительной площадке;
- исследование зависимости тока фотодиода от напряжения смещения;
- исследование зависимость спектральной чувствительности фотодиода от напряжения смещения.

Тема №4. Исследование процессов импульсной модуляции лазерного диода. *Цель работы:*

- исследование процесса модуляции интенсивности лазерного диода и влияния на форму оптического сигнала положения рабочей точки на ватт-амперной характеристике;
- > исследование зависимости коэффициента модуляции интенсивности лазерного диода от положения рабочей точки на ватт-амперной характеристике;
- **у** исследование зависимости коэффициента модуляции интенсивности лазерного диода от напряжения смещения фотодиода.

Тема №5. Моделирование формы сигнала на приемном конце реальной оптической линии связи. <u>Цель работы:</u>

- **р** расчет реальных параметров оптического сигнала по заданным характеристикам линии связи;
- моделирование на лабораторной установке формы реального сигнала в линии на основании проведенных расчетов.

Тема №6. Исследование процесса аналоговой модуляции лазерного диода.

Цель работы:

- исследование процесса модуляции интенсивности лазерного диода и влияния на форму оптического сигнала положения рабочей точки на ватт-амперной характеристике;
- **у** исследование зависимости коэффициента модуляции интенсивности лазерного диода от положения рабочей точки на ватт-амперной характеристике.

6. ТЕМЫ ПРАКТИЧЕСКИХ И СЕМИНАРСКИХ ЗАНЯТИЙ

Данный вид работы не предусмотрен учебным планом.

7. ЛАБОРАТОРНЫЕ РАБОТЫ (ЛАБОРАТОРНЫЙ ПРАКТИКУМ)

Раздел I. Источники излучения и волоконные световоды.

- №I.1. «Ватт-амперные характеристики лазерного и светоизлучающего диодов».
- №1.2. «Поляризационные характеристики лазерного диода (ЛД) и светоизлучающего диода (СИД)».
- №1.3. «Анализ модовой структуры волоконных световодов».
- №I.4. «Исследование степени когерентности лазерного диода».
- №1.5. «Экспериментальное определение числовой апертуры волоконных световодов».

Раздел II. Характеристики элементов волоконно-оптических линий связи.

- № II.1. «Исследование затухания из-за продольно-поперечных смещений торцов оптических световодов при их стыковке».
- № II.2. «Изучение затухания в оптических розетках и аттенюаторах при соединении волоконных световодов».
- № II.3. «Измерения оптических и электрических характеристик лазерного диода и фотоприемника».
- № II.4. «Исследование процессов импульсной модуляции лазерного диода».

Форма А стр. 5 из 11

Министерство науки и высшего образования Российской Федерации Ульяновский государственный университет	Форма	
Ф- Рабочая программа дисциплины		

- № II.5. «Моделирование формы сигнала на приемном конце реальной оптической линии связи».
- № II.6. «Исследование процессов аналоговой модуляции лазерного диода».
- № II.7. «Исследование потерь на изгибах оптоволокон с помощью скремблера».

8. ТЕМАТИКА КУРСОВЫХ, КОНТРОЛЬНЫХ РАБОТ, РЕФЕРАТОВ

Данный вид работы не предусмотрен учебным планом.

9. ПЕРЕЧЕНЬ ВОПРОСОВ К ЭКЗАМЕНУ

Экзаменационные вопросы

- 1. Энергетическая диаграмма полупроводника. Рисунок и объяснение с точки зрения физики твёрдого тела.
- 2. Что такое уровень Ферми в полупроводниках (определение, рисунок, пояснения)?
- 3. Получите соотношение между длиной волны (в мкм) и энергией (в электрон-вольтах), довести до численного значения.
- 4. Перечислите основные телекоммуникационные длины волн (соответствующие окнам прозрачности волоконного световода), на которых работают современные волоконнооптические линии связи. Перечислите полупроводники, используемые для обеспечения генерации в этих окнах прозрачности.
- 5. Генерация и рекомбинация носителей (примеры).
- 6. Несмещенный и смещенный р-п переходы, их зонные диаграммы (рисунок и пояснения).
- 7. Инжекция и экстракция носителей в p-n переходе, их роль при генерации света.
- 8. Что такое ток накачки полупроводникового излучателя?
- 9. Области применения одномодовых и многомодовых оптических волокон.
- 10. Что такое спонтанное и вынужденное излучение?
- 11. Дайте определение светоизлучающего диода (СИД). Какова типичная ширина спектра его излучения? Почему сформированное с помощью СИД излучение является некогерентным и неполяризованным?
- 12. Что такое ватт-амперная характеристика полупроводникового источника, и каковы требования к её виду в реальных линиях связи?
- 13. Что такое коэффициент поляризации оптического излучения?
- 14. Дайте определение лазерного диода (ЛД). Какова роль обратной связи для работы ЛД?
- 15. Что такое резонатор Фабри Перо и какую функцию он выполняет в ЛД?
- 16. Что такое ЛД с двойной гетероструктурой (ДГС)? Каковы его преимущества перед традиционными ЛД?
- 17. Дайте определение угловой расходимости излучения ЛД.
- 18. Основные характеристики волоконного световода, перечислить и привести формулы.
- 19. Используя законы геометрической оптики, проведите качественный анализ процесса распространения волн по оптическому световоду.
- 20. Какова роль полного внутреннего отражения при распространении света в волокне и планарной волноводной структуре?
- 21. Спекл-структура (картина) на торце световода, условия её возникновения, связь с интерференцией.

10. САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ

По данной дисциплине организуется и проводится внеаудиторная самостоятельная работа. Самостоятельная работа студентов, предусмотренная учебным планом в объеме не

Форма А стр. 6 из 11

Министерство науки и высшего образования Российской Федерации Ульяновский государственный университет	Форма	
Ф- Рабочая программа дисциплины		

менее 50-70% общего количества часов, должна соответствовать более глубокому усвоению изучаемого курса, формировать навыки исследовательской работы и ориентировать студентов на умение применять теоретические знания на практике.

Самостоятельная работа по данной дисциплине состоит из следующих частей:

- подготовка к лабораторным занятиям;
- подготовка к зачету и экзамену.

При подготовке к лабораторным занятиям и контрольным мероприятиям рекомендуется руководствоваться учебниками и учебными пособиями, в том числе и информацией, полученной в сети Интернет.

Студентам рекомендуется следующий порядок организации самостоятельной работы над темами и подготовки к практическим занятиям:

- ознакомиться с содержанием темы;
- прочитать материал лекций, при этом нужно составить себе общее представление об излагаемых вопросах;
- прочитать параграфы учебника, относящиеся к данной теме;
- перейти к тщательному изучению материала, усвоить теоретические положения и выводы, при этом нужно записывать основные положения темы (формулировки, определения, термины, воспроизводить отдельные схемы и чертежи из учебника и конспекта лекций);

Результаты самостоятельной работы контролируются преподавателем и учитываются при аттестации студента (зачет и экзамен).

Название разделов и тем	Вид самостоятельной работы	Объем в часах	Форма контроля
1. Ватт-амперные характеристики лазерного и светоизлучающего диодов	Проработка учебного материала	16	Устный опрос
2. Поляризационные характеристики лазерного и светоизлучающего диодов	Проработка учебного материала	16	Устный опрос
3. Анализ модовой структуры волоконных световодов	Проработка учебного материала	16	Устный опрос
4. Исследование степени когерентности лазерного диода	Проработка учебного материала	16	Устный опрос
5. Экспериментальное определение числовой апертуры волоконных световодов	Проработка учебного материала	16	Устный опрос
6. Затухание в оптических световодах при их стыковке	Проработка учебного материала	16	Устный опрос
7. Затухания в оптических розетках и аттенюаторах при соединении волоконных световодов	Проработка учебного материала	16	Устный опрос
8. Измерения оптических и электрических характеристик лазерного диода и фотоприемника	Проработка учебного материала	16	Устный опрос

Форма А стр. 7 из 11

Министерство науки и высшего образования Российской Федерации Ульяновский государственный университет	Форма	
Ф- Рабочая программа дисциплины		

9. Импульсная модуляция	Проработка учебного	10	Устный опрос
лазерного диода	материала		
10. Моделирование формы	Проработка учебного	10	Устный опрос
сигнала на приемном конце	материала		
реальной оптической линии			
СВЯЗИ			
11. Аналоговая модуляция	Проработка учебного	10	Устный опрос
лазерного диода	материала		
12. Исследование потерь на	Проработка учебного	8	Устный опрос
изгибах оптоволокон с	материала		
помощью скремблера			

11. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

а) Список рекомендуемой литературы

основная:

- 22. Давыдов, В. Н. Физические основы оптоэлектроники : учебное пособие / В. Н. Давыдов. Томск : Томский государственный университет систем управления и радиоэлектроники, 2016. 139 с. ISBN 2227-8397. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. Режим доступа: http://www.iprbookshop.ru/72209.html.
- 23. Нюшков, Б. Н. Волоконная оптика и волоконные лазерные системы. Часть I : учебное пособие / Б. Н. Нюшков. Новосибирск : Новосибирский государственный технический университет, 2010. 56 с. ISBN 978-5-7782-1346-3. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. Режим доступа: http://www.iprbookshop.ru/45082.html.
- 24. Шандаров, В. М. Основы физической и квантовой оптики [Электронный ресурс] : учебное пособие / В. М. Шандаров. Электрон. текстовые данные. Томск : Томский государственный университет систем управления и радиоэлектроники, 2012. 197 с. 5-86889-228-3. Режим доступа: http://www.iprbookshop.ru/14018.html.

дополнительная:

- 1. Гужов, В. И. Оптические измерения. Компьютерная интерферометрия : учебное пособие для бакалавриата и магистратуры / В. И. Гужов, С. П. Ильиных. 2-е изд. Москва : Издательство Юрайт, 2019. 258 с. (Бакалавр и магистр. Академический курс). Текст: электронный // ЭБС Юрайт [сайт]. Режим доступа: https://biblio-online.ru/bcode/438070.
- 2. Фокин, В. Г. Волоконно-оптические системы передачи: учебное пособие для магистратуры / В. Г. Фокин. Новосибирск: Сибирский государственный университет телекоммуникаций и информатики, 2017. 382 с. ISBN 2227-8397. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. Режим доступа: http://www.iprbookshop.ru/74665.html.

учебно-методическая:

Форма А стр. 8 из 11

Министерство науки и высшего образования Российской Федерации Ульяновский государственный университет	Форма	
Ф- Рабочая программа дисциплины		

- 1. Учебно-методическое пособие по дисциплине «Специальный физический практикум» для студентов магистратуры по направлению 03.04.02 «Физика», очная форма обучения. Санников Д.Г. Ульяновск: УлГУ, 2019. Режим доступа: http://lib.ulsu.ru/MegaPro/Download/MObject/7132.
- 2. Методические указания для самостоятельной работы по дисциплине «Специальный физический практикум» для студентов магистратуры по направлению 03.04.02 «Физика», очная форма обучения. Санников Д.Г. Ульяновск: УлГУ, 2020. Режим доступа: http://lib.ulsu.ru/MegaPro/Download/MObject/6676.

Согласовано:

Вед. специалист ООП НБ УлГУ /	Taxaela AF.	1 cd W-1	
Должность сотрудника научной библиотеки	ФИО	подпись дата	

б) Программное обеспечение____

Лицензионные математические пакеты: Maple, пакет программ Мой Офис Стандартный, ОС Альт Рабочая станция 8.

в) Профессиональные базы данных, информационно-справочные системы

1. Электронно-библиотечные системы:

- 1.1. Цифровой образовательный ресурс IPRsmart:электронно-библиотечная система : сайт / ООО Компания«Ай Пи Ар Медиа». Саратов, [2022]. –URL:http://www.iprbookshop.ru. Режим доступа: для зарегистрир. пользователей. Текст : электронный.
- 1.2. Образовательная платформа ЮРАЙТ :образовательный ресурс, электронная библиотека : сайт / ООО Электронное издательствоЮРАЙТ. Москва, [2022]. URL: https://urait.ru. Режим доступа: для зарегистрир. пользователей. Текст : электронный.
- 1.3. База данных «Электронная библиотека технического ВУЗа (ЭБС «Консультант студента»):электронно-библиотечная система : сайт / ООО Политехресурс. Москва, [2022]. URL: https://www.studentlibrary.ru/cgi-bin/mb4x. Режим доступа: для зарегистрир. пользователей. —Текст : электронный.
- 1.4. Консультант врача. Электронная медицинская библиотека :база данных : сайт / ООО Высшая школа организации и управления здравоохранением-Комплексный медицинский консалтинг. Москва, [2022]. URL: https://www.rosmedlib.ru. Режим доступа: для зарегистрир. пользователей. Текст : электронный.
- 1.5. Большая медицинская библиотека: электронно-библиотечная система: сайт / ООО Букап. Томск, [2022]. URL: https://www.books-up.ru/ru/library/. Режим доступа: для зарегистрир. пользователей. Текст: электронный.
- 1.6. ЭБС Лань: электронно-библиотечная система : сайт/ ООО ЭБС Лань. Санкт-Петербург, [2022]. URL: https://e.lanbook.com. Режим доступа: для зарегистрир. пользователей. Текст : электронный.
- 1.7. ЭБС Znanium.com:электронно-библиотечная система: сайт / ООО Знаниум. Москва, [2022]. URL: http://znanium.com. Режим доступа: для зарегистрир. пользователей. Текст: электронный.
 - 1.8. ClinicalCollection :научно-информационная база данных EBSCO // EBSCOhost :

Форма А стр. 9 из 11

Министерство науки и высшего образования Российской Федерации Ульяновский государственный университет	Форма	
Ф- Рабочая программа дисциплины		

- [портал]. URL: http://web.b.ebscohost.com/ehost/search/advanced?vid=1&sid=9f57a3e1-1191-414b-8763-e97828f9f7e1%40sessionmgr102. Режим доступа : для авториз. пользователей. Текст : электронный.
- 1.9.База данных «Русский как иностранный» :электронно-образовательный ресурс для иностранных студентов : сайт / ООО Компания «Ай Пи Ар Медиа». Саратов, [2022]. URL: https://ros-edu.ru. Режим доступа: для зарегистрир. пользователей. Текст : электронный.
- **2. КонсультантПлюс** [Электронный ресурс]: справочная правовая система. /ООО «Консультант Плюс» Электрон. дан. Москва :КонсультантПлюс, [2022].

3. Базы данных периодических изданий:

- 3.1. База данных периодических изданий EastView : электронныежурналы/ ООО ИВИС. Москва, [2022]. –URL:https://dlib.eastview.com/browse/udb/12. Режим доступа: для авториз. пользователей. –Текст : электронный.
- 3.2. eLIBRARY.RU: научная электронная библиотека : сайт / ООО Научная Электронная Библиотека. Москва, [2022]. URL: http://elibrary.ru. Режим доступа : для авториз. пользователей. Текст : электронный
- 3.3. Электронная библиотека «Издательского дома «Гребенников» (Grebinnikon) : электроннаябиблиотека / ООО ИД Гребенников. Москва, [2022]. URL: https://id2.actionmedia.ru/Personal/Products. Режим доступа : для авториз. пользователей. Текст : электронный.
- **4.** Федеральная государственная информационная система «Национальная электронная библиотека»:электронная библиотека: сайт / ФГБУ РГБ. Москва, [2022]. URL:https://нэб.рф. Режим доступа: для пользователей научной библиотеки. —Текст : электронный.
- **5. SMARTImagebase**: научно-информационная база данных EBSCO//EBSCOhost : [портал].— URL: https://ebsco.smartimagebase.com/?TOKEN=EBSCO-1a2ff8c55aa76d8229047223a7d6dc9c&custid=s6895741. Режим доступа : для авториз. пользователей. Изображение : электронные.

6. Федеральные информационно-образовательные порталы:

- 6.1. Единое окно доступа к образовательным ресурсам : федеральный портал.— URL:http://window.edu.ru/ . Текст : электронный.
- 6.2. Российское образование : федеральный портал / учредитель ФГАУ «ФИЦТО». URL: http://www.edu.ru. Текст : электронный.

7. Образовательные ресурсы УлГУ:

7.1. Электронная библиотечная система УлГУ: модуль «Электронная библиотека» АБИС Мега-ПРО / ООО «Дата Экспресс». – URL:http://lib.ulsu.ru/MegaPro/Web. – Режим доступа:для пользователей научной библиотеки. – Текст: электронный.

Согласовано:

должность сотрудника УИТИТ ФИО подпись дата

12. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Аудитории кафедры, укомплектованные необходимым специализированным оборудованием для проведения занятий, текущего контроля и промежуточной аттестации, групповых и индивидуальных консультаций.

Форма А стр. 10 из 11

Министерство науки и высшего образования Российской Федерации Ульяновский государственный университет	Форма	
Ф- Рабочая программа дисциплины		

13. СПЕЦИАЛЬНЫЕ УСЛОВИЯ ДЛЯ ОБУЧАЮЩИХСЯ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ

В случае необходимости, обучающимся из числа лиц с ограниченными возможностями здоровья (по заявлению обучающегося) могут предлагаться одни из следующих вариантов восприятия информации с учетом их индивидуальных психофизических особенностей:

- для лиц с нарушениями зрения: в печатной форме увеличенным шрифтом; в форме электронного документа; в форме аудиофайла (перевод учебных материалов в аудиоформат); в печатной форме на языке Брайля; индивидуальные консультации с привлечением тифлосурдопереводчика; индивидуальные задания и консультации;
- ¹¹¹ для лиц с нарушениями слуха: в печатной форме; в форме электронного документа; видеоматериалы с субтитрами; индивидуальные консультации с привлечением сурдопереводчика; индивидуальные задания и консультации;
- ^{вы} для лиц с нарушениями опорно-двигательного аппарата: в печатной форме; в форме электронного документа; в форме аудиофайла; индивидуальные задания и консультации.

В случае необходимости использования в учебном процессе частично/исключительно дистанционных образовательных технологий, организация работы ППС с обучающимися с ОВЗ и инвалидами предусматривается в электронной информационнообразовательной среде с учетом их индивидуальных психофизических особенностей.

Разработчик ______ ММГУ___ профессор кафедры РФЭ Санников Д.Г.

должность, ФИО

Форма А стр. 11 из 11